77百科网
当前位置: 首页 生活百科

导数的概念高等数学知识点(高等数学导数的定义和常见导数)

时间:2023-06-03 作者: 小编 阅读量: 1 栏目名: 生活百科

高等数学导数的定义和常见导数导数是微积分也是高数当中很重要的一个部分,不过很遗憾的是,和导数相关的部分很多同学都是高中的时候学的经过了这么多年,可能都差不多还给老师了所以今天的文章就一起来温习一下导数的相关知识,捡一捡之前忘记的。

导数是微积分也是高数当中很重要的一个部分,不过很遗憾的是,和导数相关的部分很多同学都是高中的时候学的。经过了这么多年,可能都差不多还给老师了。所以今天的文章就一起来温习一下导数的相关知识,捡一捡之前忘记的内容。


函数切线


关于导数,最经典的解释可能就是切线模型了。以前高中的时候,经常对二次函数求切线,后来学了微积分之后明白了,所谓的求切线其实就是求导。


比如当下, 我们有一个光滑的函数曲线 y = f(x),我们想要求出这个曲线在某个点 M 的切线,那么应该怎么操作呢?

如上图所示,我们可以在选择另外一个点N,然后做MN的割线。假设T是M的真实的切线,当我们将N向M无限逼近的时候,角NMT 在无限缩小,直到趋近与0,而此时的割线MN也就无限逼近于M点真实的切线T。


在图中,MN的斜率表示为 tanφ,其中tanφ = f(x) - f(x0) / x - x0.


当N逼近于M时:



我们令


所以:



此时 tanφ 的结果就是函数在 x0 处导数的值,上面这个方法大家应该也都不陌生,在物理课上就经常见到,只不过在物理当中不叫极限也不叫逼近,称为微元法。但不管叫什么,意思是一样的。我们理解了上面这些式子之后,再来看看导数真正的定义。


定义



假设函数 y = f(x) 在点 x0 处的邻域内有定义,当自变量 x 在 x0 处取得增量∆x (x0∆x 仍然在 x0 的邻域内),相应的函数取得增量 ∆y = f(x0∆x) - f(x0) 。如果 ∆y / ∆x 在 ∆x 趋向于0的时候极限存在,称为函数 y = f(x) 在点 x0 处可导。它的导数写成 f'(x0)



f'(x0) 也可以记成



或者



如果函数 f(x) 在开区间 I 内可导,说明对于任意 x ∈ I,都存在一个确定的导数值。所以我们就得到了一个新的函数,这个函数称为是原函数 y = f(x) 的导函数,记作 f'(x)。


不可导的情况


介绍完了常见函数的导函数之后,我们来看下导数不存在的情况。


导数的本质是极限,根据极限的定义,如果 limf(x) = a (x -> x0)。那么,对于某个正数ε,对于任何正数δ,都有 0 < | x- x0| < δ时,|f(x) - a | < ε。那么就称为 x 趋向于 x0时,f(x) 的极限是a。


我们对上面的式子进行变形,可以得到,当∆x 趋向于0 时:



也就是说极限存在的条件是无论自变量从左边逼近x0, 还是右边逼近x0,它们的极限都存在并且相等。所以,函数 f(x) 在 x0 点可导的充分必要条件就是,函数在 x0 处的左右两侧的导数都必须存在,并且相等。


另一种不可导的情况是不连续,不连续的函数一定不可导。这一点其实很难证明,我们可以来证明它的逆否命题:可导的函数一定连续。


根据导数的定义,一个点的导数存在的定义就是 ∆y / ∆x 在 ∆x 趋向于0 时存在。即:



我们把极限符号去掉:



这里的a是 ∆x 趋向于0 时的无穷小,我们队上式两边同时乘上 ∆x ,可以得到:


由于 a 和 ∆x 都是无穷小,并且 f'(x) 存在,所以 ∆y 也是无穷小。而连续的定义就是当 ∆x 趋向于0时,∆y也趋向于0,所以得证。


反例


我们来举一个反例:



它的函数图像长这样:

我们试着来证明: f(x) 在 x=0 处不可导。



由于 f(x) 在 x=0 处的左右导数不等,和极限存在的性质矛盾,所以 f(x) 在 x=0 处不可导。但是我们从函数图像上可以看出来,显然 f(x) = |x| 是一个连续函数。


常见函数的导数


我们再来看一下常见函数的导函数,其实我们了解了导数的定义之后,我们完全可以根据导函数的定义自己推算。但说实话,这些推算意思不大,所以我们直接跳过推算的部分,直接来看结论。


当然我们实际运用当中遇到的当然不只是简单的函数,很多函数往往非常复杂。那么对于这些复杂的函数,我们又应该怎么来计算它们的导数呢?敬请期待我们下一篇的内容。

今天的文章就到这里,如果觉得有所收获,请顺手点个关注吧,你们的支持是我最大的动力。

    推荐阅读
  • 白夜行一样好看的小说(白夜行终于读完了)

    警方在她家发现了吃过之后丢弃的包装盒,于是警方断定桐原洋介那天来过雪穗家。西本母女两人居住,雪穗的父亲七年前在工地上发生意外去世了。警方猜测桐原洋介和西本文代的关系不一般,不巧的是西本文代却有完美的不在场的证明。寺崎忠夫承认了他和西本文代确实在交往。这时的警方,推测桐原洋介可能是胁迫西本文代,而寺崎忠夫无法忍受,便将其杀害的,又不巧的是,这个时候,寺崎忠夫发生了意外,疲劳驾驶意外死亡。

  • 昀怎么读什么意思(昀读音和解释)

    跟着小编一起来看一看吧!昀怎么读什么意思昀是一个汉语汉字,读音为yún。释义为日光,出自于《玉篇》――昀,日光也。多用于人名,纪昀,即纪晓岚。《玉篇》日光也。昀部首:日昀笔画:8

  • 屋顶被火球砸死(神秘火球坠落挪威首都)

    NMN当地时间7月25日午夜,挪威首都奥斯陆的一些市民被空中传来的巨响惊醒。研究人员推测,这个火球是一颗火流星。根据监控,研究人员推断这颗火流星最终落入了距奥斯陆市区约60公里的Finnemarka森林中,并在流星坠落后进行了搜寻。这颗火流星的本体有卡车般大,释放出的能量相当于广岛原子弹爆炸的30倍左右。它坠落后给当地的建筑造成了一定程度的破坏,并使大约1200人不同程度地受伤神秘火球午夜坠落挪威的森林。

  • 帝豪s和帝豪gs有什么区别(帝豪s跟帝豪gs)

    近日,小编经常收到小伙伴们关于“帝豪S和帝豪GS有什么区别”的相关留言,现在为大家讲解。帝豪s和帝豪gs都是吉列汽车旗下的SUV车型。帝豪s和帝豪gs两者的主要区别在于:1,产品售价对比,帝豪s的定价比帝豪gs稍微高一些;2,产品定位对比,帝豪s虽然跟帝豪gs在车型还有很多方面很类似,但是帝豪s更注重在年轻运动、时尚感、科技感方面的品牌升级。买车究竟是买轿车好呢?其实,这个关键还是要看买车的目的是什么。

  • 普通翡翠怎么让它水头好点(如果你不懂翡翠的)

    当欣赏翡翠的水头时,联想起女人如水这句话,都有那么一种类似的感觉,清新雅致,显得是那样的纯净而动人、单纯、和平之美别具韵味。水头是翡翠业内的行家通过长时期的观察总结出来的一种比拟性的表述。说到翡翠的水头,大家都知道透明度好的翡翠,水头就好,水头就是翡翠的透明度,这种说法不完全正确。水头的好坏直接关系到成品的质量,是评价翡翠的重要因素之一。

  • 鲜红的太阳在徐徐上升改成比喻句(什么是比喻句)

    我们一起去了解并探讨一下这个问题吧!鲜红的太阳在徐徐上升改成比喻句徐徐上升的太阳像鲜红的一团火。鲜红的太阳在徐徐上升,像一个硕大的火球。比喻句,是一种常用修辞手法,意思是打比方,用浅显、具体、生动的事物来代替抽象、难理解的事物。

  • 金乡定亲风俗(文化费县之婚嫁习俗篇)

    费县民间关于婚嫁的习俗讲究也特别多,操办起来也是力求热闹。不过了解费县这些习俗还是很有意义的,既是对传统文化的传承,很多礼节的设定本来也具有实用价值。费县的很多婚嫁习俗也是这样,看似落后的无价值的仪式,有一部分因为生活习惯变化太大没有操作必要了,但大部分还是有价值的。今天首先介绍费县婚嫁习俗当中的定亲仪式,明天介绍送日子习俗,欢迎继续关注。

  • 隔离乳可以直接涂吗(怎么使用)

    隔离乳的主要作用是隔绝皮肤和彩妆,以及空气中的污染物,虽然它里面也含有一定物质,可以滋养肌肤,但单靠这些是不能够满足肌肤要求的,所以在使用隔离乳之前要做好基础护肤工作。一般情况下最简单的步骤是在使用完爽肤水以及乳液之后涂抹隔离乳,如果是本身肌肤比较容易出油,或是夏天容易出汗的情况下,可以选择拍完水之后使用隔离乳。隔离乳的主要作用是保护肌肤,使用完隔离乳之后,就可以使用其他彩妆产品了。

  • 等一个人的说说(20条等一个人的说说心情短语)

    死缠烂打的样子特别丑,所以我选择自己走。如果有一天,我走进你的心里,我也会哭,因为那里没有我。

  • 要请病假的证明怎么开?(请病假需要怎么开证明)

    第三条企业职工因患病或非因工负伤,需要停止工作医疗时,根据本人实际参加工作年限和在本单位工作年限,给予三个月到二十四个月的医疗期:(一)实际工作年限十年以下的,在本单位工作年限五年以下的为三个月;五年以上的为六个月。