77百科网
当前位置: 首页 生活百科

关于角度的除法计算方法(有温度的数学)

时间:2023-06-02 作者: 小编 阅读量: 1 栏目名: 生活百科

毫无疑问,在乘除法教学中,意义的教学是首要的。二年级初步认识乘法时,教材不强调乘的顺序。此时,教师要相机地引导学生对作品进行归类,寻找异同,理解作品背后所表示的意义。因此,教师应创设能引发学生概念冲突的情境,引导学生主动对先前的乘除法意义的认识作出必要的调整,将新的含义悦纳到已有的知识体系中。在此基础上,教师及时引导学生对第二题的算式意义进行研究,注意其发展变化。

此类问题的解法在第一学段已经学过,从学生的试卷看几乎都用除法计算,这说明学生在低年级关于乘除法的模型的建立还是比较好。但问题就出在“比较好”上,也就是说学生对乘除法的“正整数”模型掌握很好,阻碍了学生对此模型的拓展。如果说责任,责任在教师,如前所述“教师忽视了在后续教学中的关联、更新与重构,造成概念顺应上的“脱节”,使学习效果大打折扣。”这就相当于多年前我总结的“方便面”现象,再复杂的问题换上“方便面”学生也会解决,因为方便面的数量关系简单、数字清晰。

此类问题的存在固然可以从数量关系教学这一角度去分析,但这不应被等同于学生的实际思维过程,只有立足于学生已有的知识经验,探求已有经验对学生产生的影响及数域扩展后给学生带来的乘除法学习障碍,才能真正厘清学生的思维走向,进而对症下药。

毫无疑问,在乘除法教学中,意义的教学是首要的。纵观整个小学阶段,乘除法意义实际上呈现不断发展的特点,这同时又可看成一个更为漫长的发展过程中的一个环节。从宏观的角度看,二年级的乘除法意义学习阶段性十分明显,教师无疑会限于并强调“同数连加”的意义,这时学生所形成的内在表征就会有较大的局限性。特别是,由于学生在开始学习乘除法时所接触到的都是比较简单的情况,也即主要局限于正整数的乘除,从而就很容易形成以下的观念:“乘法总是使数变大,除法则总是使数变小;乘除法中各部分都是整数。”到了第二学段,数概念得到了进一步扩展,此时教师更多关注计算本身,对于乘除运算意义一般都只是寥寥数语带过,或简单地以“与整数乘除法意义相同”走过场,而恰恰忽视了乘除运算意义在新数域的推广过程及所获得的新的含义,以乘法为例,增加了“已知整体求部分”,如“6的2倍是多少?”,相应的除法则是“求取整体”,即如“已知一个数的2倍是4,求这个数?”

显然,从这样的角度去分析,前面所提及的错误的发生也就不足为奇了,因为,这在很大程度上反映了这样的现实:学生依据直觉意识到应该用除法计算,而且每天的“千米数”也应该是整数。按照他们已建立的观念,选择了除法。在学生头脑中的乘除法各部分应是整数,所以不假思索大数除以小数。

事实上,以上尽管通过分析学生思维找到了其错误的根源,但我们也应看到这种错误的“合理性”,站在学生的角度,他们不过是将仅仅适用于正整数乘除的某些“规律”错误地推广到了小数的情况,这当然应当被看成学生思维发展的一个必然过程。关键是,作为教师应清楚地认识学生在乘除法意义学习中的局限性和困难,采取适当的措施引导学生较为自觉地去实现对乘除法意义的必要的推广与更新。

(二年级上册教师用书134页)格里尔在“作为情境模型的乘除法”一文中指出:为了使纯形式的推广在直观上能够被接受,必须辅以一些具体情境,在其中所说的推广可以被认为十分必要和完全合理的。对于乘除法意义本身而言,其内容是很枯燥的,但它植根于现实的沃土,意蕴丰富。

在小学阶段,乘除法的现实模型大致有以下几种:

①等量组的聚集。即通常所说的“连加”。在这一情境下,两个因数的地位并不完全对称(单位不相同),也就是过去所说的“每份数”、“份数”。从而,也就有两种不同的除法逆运算,即通常所说的“平均分”、“包含除”。二年级初步认识乘法时,教材不强调乘的顺序。我觉得这是不妥的,要从开始认识乘法时就给学生严谨的印象,而不是怎么乘都行,当然这和单独乘法运算不同,这时的乘法是有“故事”的。

②倍数问题。如“某种饮料中水的含量是果汁含量的3倍,现有果汁20千克,问需加配多少千克的水?”

③配对问题。如“4个男孩与3个女孩出去游玩,如果选出1个男孩与1个女孩外出购物,问一共有多少种选取方法?”这也是“搭配问题”。搭配问题也就是乘法问题,并非简单列举得到答案即可。搭配问题的乘法模型是“几个几”,即分几组、每组几个。

④长方形的面积。如“已知长方形长10厘米,宽是3厘米,问长方形的面积是多少?”

按照格里尔的观点,在后两种情况下,两个因数的位置是完全对称的。还有研究者将乘法模型概括为:等量组的聚集、矩形模型、配对模型和倍数模型,并认为最基本的是第一种模型,其他几种都可以转化为第一种。此外,还有速度——时间模型、单价——数量模型工作效率——时间模型、密度——体积模型。

这几种原型在第一学段均已出现,但在学生头脑中的印象是浅显的、零散的,仅限于正整数,且并未形成对乘法意义的阶段性完整认识。随着学生数概念的发展,相应的乘法意义应与其相互促进。在教学中,教师仍应努力丰富学生头脑中的乘除法意义原型,提高其对意义的表征能力。

在五年级上册“小数乘法”单元,教师可以设计这样的问题:请用你喜欢的情境表达“1.3×5”的意义(“新课程标准”非常提倡这样的训练,从一年级开始就建议老师进行这方面的训练。在2015年期末考试时,我出了一道这样的试题:用图形表示“6+3”,儿童虽然表示的五花八门,但都能突出“合起来”这一结构性特点)。

对于如何表示“1.3×5”的意义,经过充分的思考、讨论、交流,学生会产生很多想法:如购物、长度、质量、面积等数学问题,如画实物图或线段图,如用文字或加法算式直接说明。

学生的表现形式会有一个从单一到丰富的过程,这也从不同角度反映了不同个体对乘法意义在小数域中的认识表征。此时,教师要相机地引导学生对作品进行归类,寻找异同,理解作品背后所表示的意义。学生在整理后会发现:1.3×5既可以表示5个1.3(等量组的聚集),也表示5的1.3倍或1.3的5倍(倍数问题),还可以用在面积计算中等。也正是在这样的交流共享中,学生原先停留在正整数领域中的乘法意义有了进一步的发展,在丰富的原型中体会到乘法意义在小数领域的本质推广与延伸。

建构主义认为,对于学生在概念学习中发生的错误不应单纯依靠正面的示范和反复练习去纠正,而应以引发主体内在的“观念冲突”为必要前提,使其经历“自我否定”的过程。高年级学生正处于形象思维向抽象思维发展的过渡阶段,已经具备一定的思考能力,如果教师只是简单地将乘除法意义“教”给学生,缺少学习主体的自我内化过程,那么概念的发展就如浮光掠影。因此,教师应创设能引发学生概念冲突的情境,引导学生主动对先前的乘除法意义的认识作出必要的调整,将新的含义悦纳到已有的知识体系中。

以分数乘法的教学为例,教师在教学中可出现这样一组情境:

①我的绳子长1/3米,小明的绳长是我的3倍,小明的绳子有多长?

②我的绳子长3米,小明的绳长是我的1/3,小明的绳子有多长?

引导学生通过画图、讨论得出算式,反馈时,教师适时追问:都是1/3×3,表示的意义相同吗?这就引发学生的思维冲突:如果说第一题可用“3个1/3 ”解释,那么后一题显然不能,这题的意义又该怎样表述?这样,在对同一算式不同含义的挖掘中,学生很直接地感受到只用以前的“同数连加”的乘法意义已不足以解释分数乘法出现的新问题,产生了认知冲突,有了扩展新含义的需要。

在此基础上,教师及时引导学生对第二题的算式意义进行研究,注意其发展变化。并指出在引入分数以后,“倍”的概念发展了,既包含了原来的“整数倍”、“小数倍”,也包括了这节课所学的“一个数的几分之几是多少”。这样,学生经历了“冲突——建构——顺应”的学习过程,新概念的融入便不再是教师强加,而是主动的更新与顺应。

学生在数域扩展后,容易将在整数乘除法意义学习中的一些“规律”错误地推广到小数、分数乘除法学习中,繁杂的数据构成了学生在学习小数、分数乘除法中的一大障碍。面对新题目,学生往往更多地关注情境中所包含的数量,而不注意其中的文字内容,以及内容背后的运算意义。对此,教师不妨立足学生的思维方式,化繁为简,抓住本质,以此修正认识误区。

基于这样的思考,以分数的除法意义教学为例,教材在编排中已经考虑到了学生的学习困难,采用由整数乘除法改编数据后过渡到分数乘除法的方式,帮助学生理解“分数除法的意义与整数除法的意义相同”,即“分数除法是分数乘法的逆运算”。从表面上看,学生通过旧有知识已经促成了新知理解,而事实上,学生此时的理解仅仅是在特定题组中的,脱离题组这根“拐杖”,学生又会受到数据的干扰。因此,教师要紧接着出示这样一组题,可以要求学生只列式不计算:

①把10平均分成2份,每份是多少?

②10里面有几个1/5?

③10是2的几倍?

④一个数的1/5是8,这个数是多少?

⑤两个因数的积是20,其中一个因数是4/5,另一个因数是几?

可以发现,这组题虽然脱离了具体的情境,但都直指除法意义本身。在学生列式后,教师追问:你是凭什么选择用除法计算的?是否用除法计算,与题目中的数据有关吗?这时,学生就会走出情境,思考题目背后的意义,思考自己选择的初衷。“分数除法的意义与整数除法相同”,但具体表现在哪些地方呢?“平均分”、“包含除”、“倍数问题逆运算”、“已知部分求整体”等,这些都是除法意义在具体问题中的结构本原。学生知道了这一点,也就能避开数据产生的干扰,而更关注于问题本身的含义,将视角从“关注数据”转换到“关注意义”中来,进而,在面对复杂的情境、复杂的数据时,能以运算意义为依托,将问题简化。

小学阶段乘除法意义的教学应着力在阶段性与发展性之间寻求平衡。换言之,对于任何数学概念的教学,教师都要立足于学生的思维状态,关注其对概念的不断更新、发展、重构,及时排除概念发展中的障碍,从而达成概念教学效果的最大化。

    推荐阅读
  • 如何立足岗位发挥好示范引领作用(如何发挥好岗位的示范和引领作用)

    跟着小编一起来看一看吧!如何立足岗位发挥好示范引领作用首先要做实践的模范。要忠实履行政协会议的各种决议,自觉遵守各项工作制度,正确行使自己的民主权力。中共党员中的政协委员,不论是在政协组织的活动中,还是在日常工作生活中,都要积极地进行调查研究,了解最新动态,了解社会各方面的真实情况,了解群众的情绪、困难和诉求,充分反映他们的要求和呼声,使党委和政府能及时采纳他们对党和政府工作的意见建议。

  • 海底捞 摄像头(海底捞包间内安装摄像头遭质疑)

    对于安装摄像头是否会侵犯隐私,网友各执一词。安装了摄像头的门店也表示,安装主要是为了防止客人丢失东西,方便找回。不过,北青报记者进一步采访其安装摄像头的必要性时,截至发稿时,海底捞方面暂时没有回应。图像信息系统在营业期间应当正常运行,不得中断。在这一规定中,包间并未罗列其中。此前曾有调查称,在30家火锅店中,有19家在包间装有摄像头;在14家非火锅店中,也有2家的包间装有摄像头。

  • 讯飞智能语音服务(IQEQ齐上阵讯鸟软件打造更有)

    讯飞智能语音服务埃森哲调研显示:多达75%的高管表示,自己的组织将在未来三年积极部署某种人工智能技术,AI将作为一名同事、合作者和值得信赖的顾问,在企业中与人类并肩协作。智能客服语音机器人能够支持语音情感三分类、四分类和六分类,在各类应用场景下识别率均超过85%,在成熟的业务场景下识别准确率可高达95%。

  • 提高fps的方法csgo(FPS游戏CSGO之身位控制)

    FPS游戏CSGO之身位控制​高手与菜鸟最大的差距也许还不是枪法,而是存活率同样的一个点位,菜鸟去看点,永远是拉一个大身位,同时暴露在复数架枪点的准星内,所以死亡率奇高无比高手的身法多变,身位控制良好,知道适当切换行进节奏与路线。

  • 怎么用微信支付(用微信支付的方法介绍)

    怎么用微信支付?最简单的,看到各个超市或者别的地方的收银台都会贴有一张二维码图片,上面写着微信支付,就可以使用手机微信来支付了,打开手机微信,右上角有一个的标志,点击它,下面我们就来聊聊关于怎么用微信支付?接下来我们就一起去了解一下吧!这是把商家的二维码放到相机前,就可以自动扫描了,扫描出来后,可以看到要付款的别人的微信名称,可以核对一下,没问题就输入金额,完成付款。

  • 白萝卜多久能煮熟(白萝卜怎么煮)

    下面更多详细答案一起来看看吧!白萝卜多久能煮熟通常情况下,白萝卜水只要煮十五到二十分钟就差不多了。白萝卜煮水的做法非常简单,我们平时如果想要喝白萝卜水的话都可以自己在家里制作。制作它首先要把准备好的白萝卜清洗干净并切成片状或是块状,注意这里是不需要给萝卜去皮的。在白萝卜处理好之后,我们就可以准备一口锅并往里面倒入适量的清水加热。

  • 键盘和电脑怎么清洁(干货清洁电脑屏幕)

    键盘和电脑怎么清洁DTECH帝特,传递精彩画面,分享快乐时光!这种情况,我们可以购买专用液晶屏幕清洁剂进行清洁,价格大概在20~50元之间,通常专用清洁剂都有详细的使用说明。以上几个清洁方法都需要有规则地轻轻擦拭屏幕,不可以用力按着擦,否则容易给屏幕造成坏点。

  • 茉莉飘雪茶的功效与作用(关于茉莉飘雪茶的功效与作用)

    茉莉飘雪茶的功效与作用茉莉花茶是花茶中的典型,茉莉飘雪花茶能够帮助人体降血脂,有利于人体内脂肪的分解,还有一定的清除氧自由基作用,所以能够起到抗氧化、防衰老的功效。茉莉飘雪花茶能够起到保肝护肝、美容养颜的作用,同时还有一定杀菌、抗菌、增强机体免疫力的作用,可以预防感染性疾病,因为茉莉花茶中含有的营养物质比较丰富,能够提高机体的免疫力,也能够对抗疾病的发生。

  • 堕仙是指什么意思(堕仙出现在哪位人物身上呢)

    堕仙是指什么意思是指堕落的仙人,也指走火入魔,因为面对让自己万分痛苦的事而无法承受,后变为魔的紫薰上仙。紫薰上仙堕仙成魔是因一直守护她的檀凡上仙为救她而死,紫薰上仙觉得对不起檀凡上仙,又很愤怒于白子画的漠不关心,所以成为堕仙。求而不得,一念成魔。本是仙界的紫薰仙子,五上仙之一,擅长制香,因痴恋白子画而成为堕仙,坠入魔道。后被花千骨感动,放下执念,将所有功力传给白子画,成全白子画与花千骨。

  • 想让学习强国由青铜变成骨灰吗(想让学习强国由青铜变成骨灰吗)

    A、正确B、错误正确答案:A135、我国鼓励各类市场主体在有效保护旅游资源的前提下,依法合理利用旅游资源。A、正确B、错误正确答案:A137、2021年1月22日,我国首部战疫纪录电影上映,影片以平实的语言讲述了武汉人与来自全国各地医疗系统及其他行业的一线人员,一起打响武汉抗击新冠肺炎疫情阻击战。A、50%B、60%C、70%D、80%正确答案: